NKX2.5 mutations in patients with non-syndromic congenital heart disease.
نویسندگان
چکیده
BACKGROUND Cardiac development is a complex and multifactorial biological process. Heterozygous mutations in the transcription factor NKX2.5 are between the first evidence of a genetic cause for congenital heart defects in human beings. In this study, we evaluated the presence and frequency of mutations in the NKX2.5 gene on 159 unrelated patients with a diverse range of non-syndromic congenital heart defects (conotruncal anomalies, septal defects, left-sided lesions, right-sided lesions, patent ductus arteriosus and Ebstein's anomaly). METHODS The coding region of the NKX2.5 locus was amplified by polymerase chain reaction and mutational analysis was performed using denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. RESULTS We identified two distinct mutations in the NKX2.5 coding region among the 159 (1.26%) individuals evaluated. An Arg25Cys mutation was identified in a patient with Tetralogy of Fallot. The second mutation found was an Ala42Pro in a patient with Ebstein's anomaly. CONCLUSIONS The association of NKX2.5 mutations is present in a small percentage of patients with non-syndromic congenital heart defects and may explain only a few cases of the disease. Screening strategies considering the identification of germ-line molecular defects in congenital heart disease are still unwarranted and should consider other genes besides NKX2.5.
منابع مشابه
Screening and biochemical analysis of GATA4 sequence variations identified in patients with congenital heart disease.
Few known monogenic causes of non-syndromic congenital heart disease (CHD) have been identified. Mutations in NKX2.5 were initially implicated in familial cases of cardiac septal defects and subsequently, functionally significant NKX2.5 mutations were found in diverse forms of non-syndromic CHD. Similarly, mutations in GATA4, which encodes a cardiac transcription factor, were first identified i...
متن کاملGenetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects.
BACKGROUND The genetic basis of most congenital heart defects (CHDs), especially non-syndromic and non-familial conditions, remains largely unknown. METHODS AND RESULTS DNA samples were collected from immortalized cell lines and original genomes of 256 non-syndromic, non-familial patients with cardiac outflow tract (OFT) defects. Genes encoding NKX2.5, GATA4, GATA6, MEF2C, and ISL1, essential...
متن کاملCNV Analysis Using Multiplex Ligation-Dependent Probe Amplification in Iranian Families with Non-Syndromic Congenital Heart Defects: Early Diagnosis of Non-Syndromic Patients
Background and Aims: Congenital heart defects (CHD) are the most common type of congenital disability. Copy number variations (CNVs) have been found as one of the genetic etiology of non-syndromic CHD, and researchers have detected several pathogenic CNVs in patients with cardiac defects. Materials and Methods: In the present study, 70 patients with familial (20 patients) and sporadic (50 pati...
متن کاملMultiplex Ligation-Dependent Probe Amplification Analysis of GATA4 Gene Copy Number Variations in Patients with Isolated Congenital Heart Disease
GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs), mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and cong...
متن کاملCongenital Heart Disease NKX2.5 Mutations in Patients With Congenital Heart Disease
OBJECTIVES The purpose of this study was to estimate the frequency of NKX2.5 mutations in specific cardiovascular anomalies and investigate genotype-phenotype correlations in individuals with NKX2.5 mutations. BACKGROUND Recent reports have implicated mutations in the transcription factor NKX2.5 as a cause of various congenital heart defects (CHD). METHODS We tested genomic deoxyribonucleic aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of cardiology
دوره 138 3 شماره
صفحات -
تاریخ انتشار 2010